A minimum total power methodology for projecting limits on CMOS GSI
نویسندگان
چکیده
A circuit design methodology minimizing total power drain of a static complementary metal–oxide–semiconductor (CMOS) random logic network for a prescribed performance, operating temperature range, and short channel threshold voltage rolloff is investigated. Physical, continuous, smooth, and compact “Transregional” MOSFET drain current models that consider high-field effects in scaled devices and permit tradeoffs between saturation drive current and subthreshold leakage current are employed to model CMOS circuit performance and power dissipation at low voltages. Transregional models are used in conjunction with physical short channel MOSFET threshold voltage rolloff models and stochastic interconnect distributions to project optimal supply voltages, threshold voltages, and device channel widths minimizing total power dissipated by CMOS logic circuits for each National Technology Roadmap for Semiconductors (NTRS) technology generation. Optimum supply voltage, corresponding to minimum total power dissipation, is projected to scale to 510 mV for the 50-nm 10-GHz CMOS generation in the year 2012. Techniques exploiting datapath parallelism to further scale the supply voltage are shown to offer decreasing reductions in power dissipation with technology scaling.
منابع مشابه
Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملLow Power Microelectronics: Retrospect and Prospect
The era of low power microelectronics began with the invention of the transistor in the late 1940’s and came of age with the invention of the integrated circuit in the late 1950’s. Historically, the most demanding applications of low power microelectronics have been battery operated products such as wrist watches, hearing aids, implantable cardiac pacemakers, pocket calculators, pagers, cellula...
متن کاملDesign of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
متن کاملOptimized Standard Cell Generation for Static CMOS Technology
Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...
متن کاملOptimized Standard Cell Generation for Static CMOS Technology
Fabrication of an integrated circuit with smaller area, besides reducing the cost of manufacturing, usually causes a reduction in the power dissipation and propagation delay. Using the static CMOS technology to fabricate a circuit that realizes a specific logic function and occupies a minimum space, it must be implemented with continuous diffusion runs. Therefore, at the design stage, an Euleri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. VLSI Syst.
دوره 8 شماره
صفحات -
تاریخ انتشار 2000